Aguas industriales

Trabajo de optimización y disminución del uso de agua en la cervecera Heineken

Objetivos

- Disminución del consumo de agua
- Reutilización de las aguas
- Adecuación e instalación de equipos para llevar a cabo los objetivos anteriores

Descripción de los objetos de estudio

Breve descripción de los equipos estudiados, con la finalidad de dar una idea clara del objeto de nuestras actuaciones.

- •Equipos:
 - Líneas de transporte
 - Llenadora
 - Paster
 - Lavadora de botellines
 - Limpieza de cajas de botellines
 - •Cip's

Lineas de transporte

Imagen tomada de la presentación de Carlos de Valdivia, "Aguas en la industria alimentaria"

- Transporte de los productos de una sección a otra.
- Se distinguen varios tipos dependiendo del envase que transporten:
 - Latas
 - Familiar (1I)
 - Botellín
 - Botellín retornable
 - Barril
- Distinguimos dos procedimientos en ellas:
 - Lubricación
 - Limpieza

Llenadora

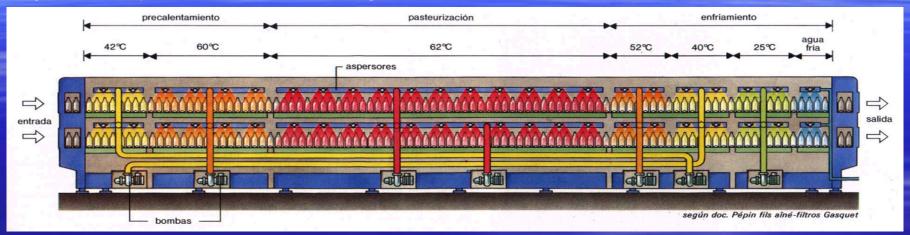

 Llenado de los diferentes tipos de envases

Imagen tomada de la presentación de Carlos de Valdivia, "Aguas en la industria alimentaria"

Paster

Imagen tomada de la presentación de Carlos de Valdivia, "Aguas en la industria alimentaria"

- Utilizada para la pasteurización del producto una vez embotellado, mediante tratamiento térmico
- El agua utilizada se acompaña de un alguicida, ya que debido a la humedad se pueden formar hongos y algas.

Lavadora de botellines

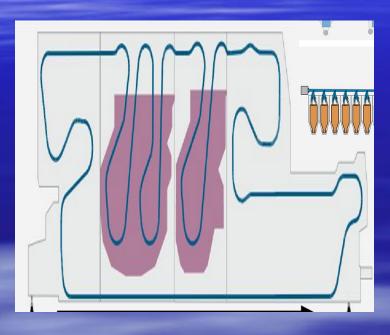


Imagen tomada de la presentación de Carlos de Valdivia, "Aguas en la industria alimentaria"

- Se utiliza para el lavado de los botellines retornables
- Consta de varios "baños" donde se van limpiando por fases los botellines

Lavadora de cajas

 Lava las cajas de plástico donde se distribuyen los botellines retornables

Imagen obtenida de: http://www.zysko.com/esp/novedades/index.php?
pageNum rsNovedades=2&totalRows rsNovedades=20

CIP's

Imágenes obtenidas del catalogo CIP Krones

 Encargados de la limpieza de tuberías, constan de cuatro fases aclarado, limpieza con sosa, desincrustración con ácido y enjuague.

Actuación

- Se pasa a detallar el conjunto de medidas adoptados para disminuir el consumo de agua, por cada uno de los equipos anteriormente detallados
- Se añaden también propuestas de instalación de nuevos equipos para diminuir el consumo o reutilizar las aguas ya utilizadas.

Lineas de transporte

Lubricación:

 Sustituir la actual lubricación húmeda por lubricación seca en las zonas donde sea viable.

Limpieza:

 Sustitución de las bombas por otras de menor consumo pero que cumplan con la presión requerida.

Llenadora

 Sustitución de las bombas para proporcionar un caudal menor y reducción de la sección de los orificios dosificadores de agua para mantener la presión

Paster

Reutilización de un 25% del agua utilizada previo paso por una rejilla y un tratamiento con cloro

Lavadora de botellines

 Reutilización de las aguas de la lavadora, sometida a tratamiento de depuración

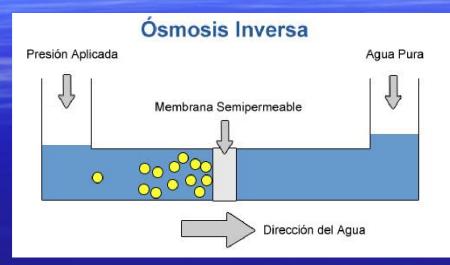
Limpieza de superficies

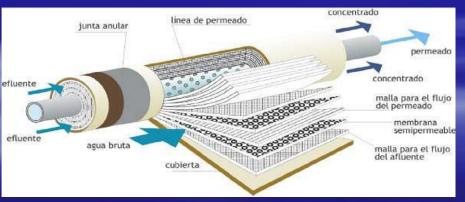
 Sustitución de las bombas para proporcionar un caudal menor y reducción de la sección de los orificios dosificadores de agua para mantener la presión

CIP's

• Instalación de medidores de conductividad a la entrada y la salida, de modo que llegado el punto en que las medidas se igualen en la fase de enjuague, el proceso se detenga consiguiendo un ahorro de agua.

Nuevas Instalaciones


- Instalación de bombas de menor caudal;
 15000 l/h a 14000 l/h
- Sustitución de dosificadores de agua para mantener la presión de salida
- Instalación de medidores de conductividad
- Instalación de dos tanques de recirculación
- Instalación de una planta de tratamiento por ósmosis inversa.


Tanques de recirculación

Tanque 1:

- Recepción de las aguas utilizadas, paso por una rejilla, para eliminación de sólidos
- Tanque 2:
 - Recepción de las aguas tratadas del tanque 1 y redistribución a los siguientes equipos:
 - Paster
 - Lavadora de botellines
 - Limpieza de superficies
 - Limpieza de filtros y tanques
 - Jardinería y otros.

Planta de ósmosis inversa

- Tratamiento mediante filtros de membrana para la eliminación de impurezas
- Alta calidad de salida del agua
- Posterior cloración para aseguramiento de la calidad
- Alto coste de instalación y mantenimiento
- Dispuesta entre los tanques 1 y 2

Resultados

 Desglose de los cálculos teóricos de ahorro de agua que supondrían estas medidas, y ahorro total

Instalación	Ahorro (m³/año)
Lubricación Transporte	14600
Limpieza Transpo	rte 8,064
Limpieza Llenado	ras 28,770
Limpieza de Superficies	198
Paster	10468,875
Lavadora de Botellines	28125
Otros	1610,068
Total	55038 777

Total 55038,777

Conclusiones

- Ahorro de una gran cantidad de agua que generaría la rápida amortización de los nuevos equipos y un ahorro a partir de ésta.
- Obtención de certificaciones internacionales por buen uso del agua (introducir certificado)
- Estrategia de marketing de cara a la opinión pública

Realizado por:

- María Cabeza Aguilera
- Ana Isabel García Espinar
- Alejandra Ramírez de Arellano Pérez
- Emilio De los Reyes Paradas
- Marino Antonio Escudero Herrera
- Antonio Alcalá Medina

Agradecimientos a:

Carlos de Valdivia