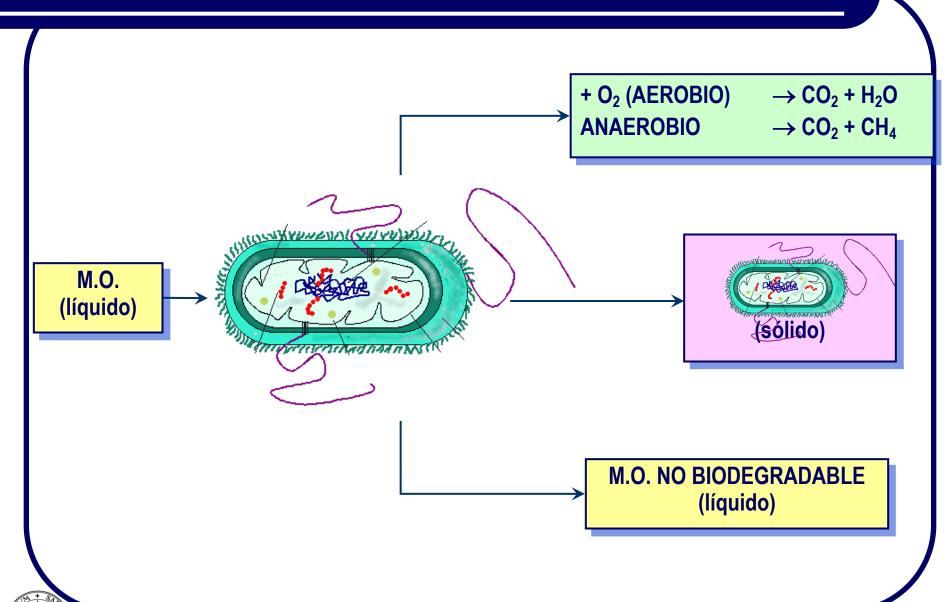
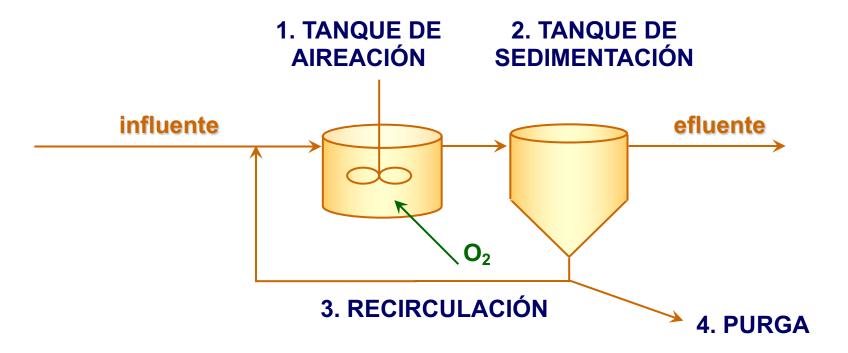
Master en Ingeniería del Agua

Sevilla Julio d 2008

Procesos biológicos.

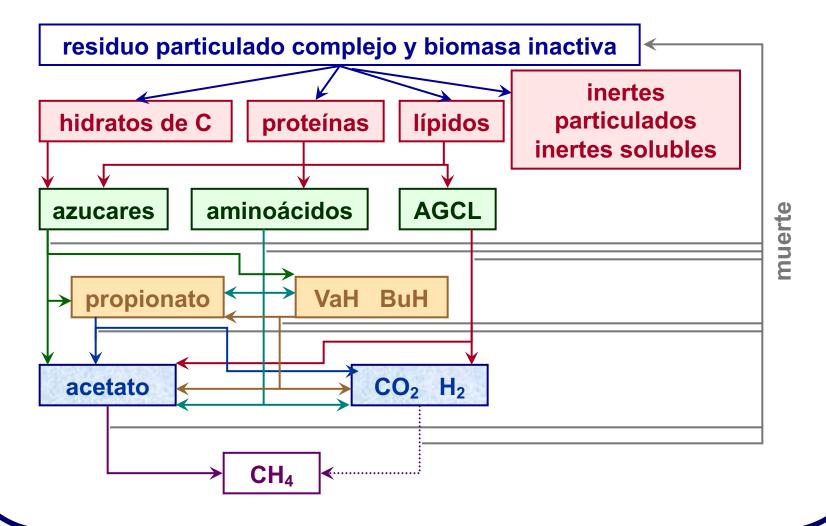


Departamento de Ingeniería Química y Tecnología del Medio Ambiente Universidad de Valladolid

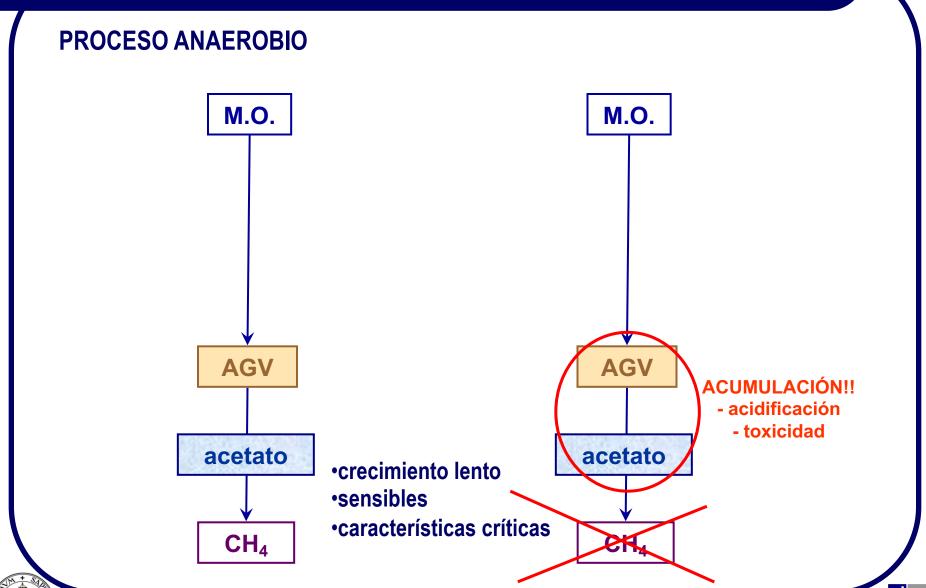

María Fdz-Polanco Fernando Fdz-Polanco Sara I. Pérez Elvira

FUNDAMENTOS BIOLÓGICOS

FANGOS ACTIVOS



- crecimiento en suspensión (aireación o medios mecánicos)
- formación de flóculos = FANGO ACTIVO



PROCESO ANAEROBIO

PROCESO ANAEROBIO. Producción y composición del BIQGÁS

- composición 70-75% CH₄ 30-25% CO₂
- valor energético CH₄ = 35.8 kJ/L

 relación entre MO eliminada y el metano producido

$$\begin{array}{ll} C_6 H_{12} O_6 & \rightarrow 3 \ CO_2 + 3 \ CH_4 \\ C_6 H_{12} O_6 + 6 \ O_2 & \rightarrow 6 \ CO_2 + 6 \ H_2 O \end{array}$$

$$\frac{3\,\text{CH}_4}{6\,\text{O}_2} = \frac{3\cdot 22.4\,\text{L CH}_4}{6\cdot 32\,\text{g O}_2} = 0.350\,\frac{\text{L CH}_4}{\text{g BOD}_{\text{L eliminada}}}$$

eliminación de MO

$$18\,\frac{kg\,BOD_{L\,elim}}{m^3}\cdot 10^4\,\frac{m^3}{d}\cdot 0.350\,\frac{m^3\,CH_4}{kg\,BOD_L} = 6.3\cdot 10^4\,\frac{m^3\,CH_4}{d}$$

$$6.3 \cdot 10^4 \ \frac{\text{m}^3 \ \text{CH}_4}{\text{d}} \cdot 35.8 \cdot 10^3 \ \frac{\text{kJ}}{\text{m}^3 \ \text{CH}_4} = 2.26 \cdot 10^9 \ \frac{\text{kJ}}{\text{d}}$$

NECESIDADES NUTRICIONALES

CLASIFICACIÓN	FUENTE DE E	FUENTE DE C
AUTÓTROFO		C inorgánico
fotoautótrofo quimioautótrofo HETERÓTROFO	luz redox inorgánica	C orgánico
fotoheterótrofo quimioheterótrofo	luz redox orgánica	

DONANTE PRIMARIO M.O.

DONANTE ENERGÍA ENERGÍA ENERGÍA

Los e- son eliminados del donante primario y transferidos a portadores intracelulares que llevan los e- al aceptor terminal que es reducido para regenerar al portador.

Los pasos de transferencia producen un desprendimiento de E que las células capturan mediante portadores de E.

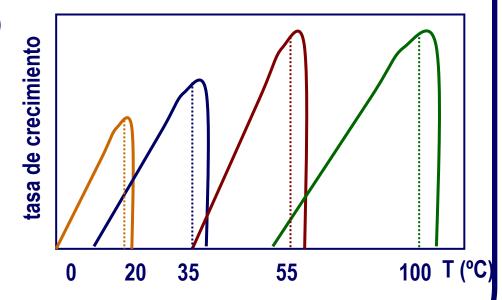
PORTADORES INTRACELULARES:

•difunden en el citoplasma: NAD+(catabólicas), NADP+ (anabólicas),

•unidos a enzimas: NADH, flavoproteínas, citocromos, quinonas

TEMPERATURA (anaerobio)

- importante por la lenta velocidad de crecimiento
- tasa de crecimiento se duplica cada 10°C
- a T mayor de la óptima se destruyen enzimas


CLASE	INTERVALO (°C)	
psicrófilas	-5 a 20	
mesófilas	8 a 45	
termófilas	40 a 70	
hipertermófilas	65 a 110	

ELECCIÓN DEPENDE DE LA CARGA (CH₄)

VENTAJAS

mayor temperatura ⇒
mayor actividad ⇒
menor volumen
DESVENTAJAS

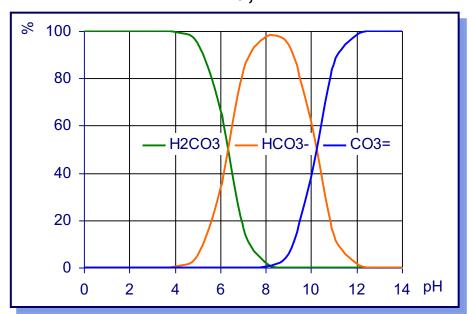
- coste energético
- pérdida de la capacidad del sistema si hay un fallo en la calefacción

intervalo mayor ⇒ mayor crecimiento temperatura óptima

pH Y ALCALINIDAD (6.6-7.6 problemas de acidificación)

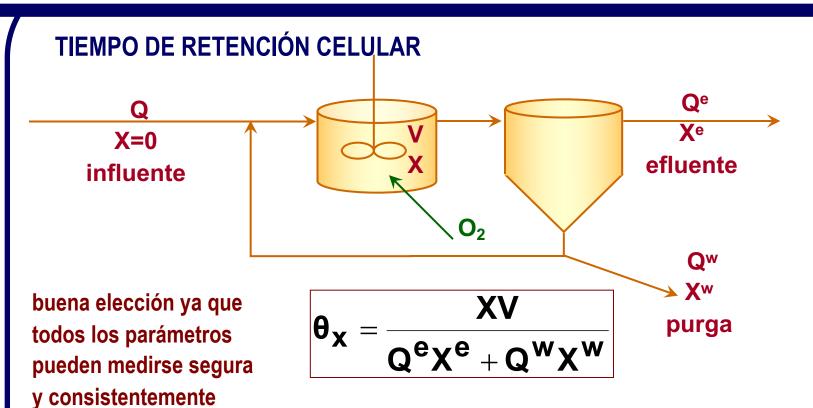
$$CO_2$$
 (g) \leftrightarrow CO_2 (ac)
 CO_2 (ac) + $H_2O \leftrightarrow H_2CO_3$

$$\frac{[CO_2(g)]}{[H_2CO_3^*]} = K_H = 38 \text{ atm/mol } (35^{\circ}C)$$

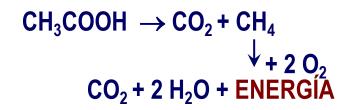

$$H_2CO_3^* = CO_2 \text{ (ac)} + H_2CO_3$$

$$H_2CO_3 \leftrightarrow HCO_3^- + H^+$$

$$K_{a,1} = 5 \cdot 10^{-7} (35^{\circ} C) \Rightarrow pK_{a,1} = 6.3$$


$$HCO_3^- \leftrightarrow CO_3^- + H^+$$

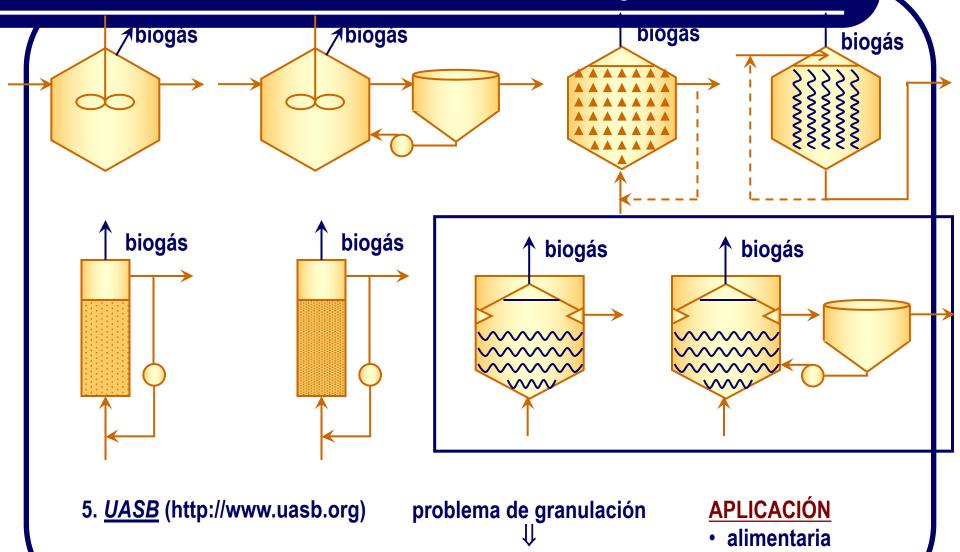
$$K_{a,2} = 6 \cdot 10^{-11} (35^{\circ}C) \Rightarrow pK_{a,2} = 10.2$$


CRECIMIENTO DE MICROORGANISMOS

AEROBIO

$$CH_3COOH + 2 O_2 \rightarrow 2 CO_2 + 2 H_2O + ENERGÍA$$

ANAEROBIO



0,05 kg SSV/kg DQO elim

FUNDAMENTOS BIOLÓGICOS. Tecnología Anaerobia

conocimiento de los

factores de granulación

industria química

papelera

PARÁMETRO	AEROBIO	ANAEROBIO
ARRANQUE	+	LENTO
OPERACIÓN	SENCILLA	COMPLEJA (metanogénicos)
RENDIMIENTO	85-95%	80-90%
TRH	≈ 3-5 h	≈ 2 d
SOBRECARGA	+	-
OXÍGENO	-	+
TEMPERATURA	+	35°C
SUBPRODUCTOS		CH ₄
NUTRIENTES	100/5/1	100/0.5/0.1
FANGOS	0.5 kg SSV/kg MO _{elim}	0.05 kg SSV/kg MO _{elim}
CRECIMIENTO	RÁPIDO	LENTO
OLORES	+	CH ₄ , H ₂ S
REQUERIMIENTOS DE TAMPÓN	-	+
MLSS	4 g/L	10 g/L

